Refine, Compress, Re-rank: Improving Listwise Re-ranking with Large
Language Models

Vineet Sunkavalli and Veda Kailasam and Shagufta Anjum
University of Illinois, Urbana-Champaign
vineets3@illinois.edu, vedak2@illinois.edu, sanjum8@illinois.edu

Abstract

Recent advancements in Large Language Mod-
els (LLMs) have significantly improved their
application in information retrieval, particularly
in listwise passage ranking. However, these
models often face challenges due to initial data
order sensitivity and constraints imposed by
context window sizes. Our paper introduces a
multi-stage re-ranking approach that begins by
refining initial rankings using pre-trained mod-
els. It then employs natural language process-
ing techniques such as summarization, keyword
extraction, title generation, and topic modeling
to compress text. This allows the entire passage
set to fit within a single LLM context window,
eliminating the need for a sliding window ap-
proach. This method addresses the core chal-
lenges of initial order sensitivity and context
window limitations, thereby enhancing ranking
accuracy. Our findings suggest that this ap-
proach could set a new standard for efficiency
and effectiveness in passage ranking tasks us-
ing LLMs.

1 Introduction

Modern information retrieval (IR) systems rely on
a multi-stage approach called passage re-ranking
to first retrieve, then identify the most relevant
passages and order them based on their rele-
vance. This process has typically involved eval-
uating each document-query pair individually, uti-
lizing what is known as a point-wise approach.
Typically, these models are given a document-
query pair and simply output relevance scoring for
said pair directly. Some examples of point-wise
rankers are MonoBERT(Nogueira et al., 2019) and
MonoT5(Nogueira et al., 2020). There are also pair-
wise approaches, such as DuoBERT and DuoT5,
which compared two passages at a time in a fashion
similar to a sorting algorithm; however, this is an
expensive approach with respect to both time and
compute.

In recent years, advancements in deep learning
have led to the advent of Large Language Models
(LLMs). Unlike prior language models, LLMs are
highly adaptable and capable of performing at or
near state of the art in most, if not all, Natural Lan-
guage Processing(NLP) Tasks. More importantly,
they are capable of doing so while being capable of
performing tasks and outlining their reasoning and
thought process in natural language as well. The
use of LLMs has proliferated in several NLP tasks,
with passage re-ranking being no exception.

Early approaches to LLM Re-ranking employed
point-wise approaches, with some notable exam-
ples being UPR (Sachan et al., 2023a) and HELM
(Liang et al., 2023). These approaches take a doc-
ument and document-query pair respectively and
attempt to form a natural language representation
of their relevance. While this approach can be
strong, it does not take other passages into account,
leading to a potential area of improvement.

RankGPT (Sun et al., 2023) overcomes the flaws
of prior point-wise approaches. It employs what is
known as a list-wise approach, enabling the model
to relatively rank documents with comparison to
other passages. In addition, less calls are needed
and more passages are read than a pairwise ap-
proach.

However, RankGPT itself suffers from several
issues:

* The initial order of documents can greatly in-
fluence the final ranking due to position bias
exhibited by LLMs. If the initial order is bad,
that can negatively affect the ranking. (Tang
et al., 2024)

* There are constraints on the maximum input
length that LLMs can process at one time. In
order to circumvent this limitation, the sliding
window method is widely used. However, this
can still affect accuracy as not all passages
are available when re-ranking, leading to



inevitable oversights.

* It tends to be computationally quite intensive,
as compared to point-wise reranking.

* Documents in the middle of a long list some-
times get "lost" or ignored as models tend to
focus on the documents at the start and end of
the list (Tang et al., 2023)

Our aim is to resolve the inefficiencies and issues
caused by the aforementioned flaws present in list-
wise approaches. To do so, we plan to address
the two largest issues: (i) initial ordering; and, (ii)
sliding window length. We also aim to improve
computational cost and contextual understanding.

To resolve these issues, we propose a multi-stage
pipeline: Refine-Compress-Re-rank. Our key con-
tributions with our pipeline are:

* Refine: A MonoBERT model used a simple
pointwise re-ranker in order to improve the ini-
tial order of documents given to our re-ranker,
with a goal of being computationally cheap as
well.

e Compress: A Flan-T5-XL(Chung et al.,
2022a) model used to compress passages to a
single sentence, greatly decreasing the num-
ber of tokens per passage and enabling us to
increase sliding window length as well as en-
able better contextual understanding.

* Re-rank: A GPT-3.5.-Turbo model used to re-
rank passages, similar to RankGPT but with-
out a sliding window.

2 Related Work

The problem of improving passage ranking
with Large Language Models (LLMs) has seen
substantial research interest, particularly focus-
ing on refining pre-trained models, re-ranking
methodologies, and prompt engineering. Pre-
trained models like BERT have been effectively
utilized for passage ranking, leading to the devel-
opment of architectures such as MonoBERT and
DuoBERT. MonoBERT, which applies BERT in a
pointwise manner, scores passages independently
of each other, while DuoBERT employs a pair-
wise approach to compare two passages at a time
(Nogueira and Cho, 2019). Despite their effec-
tiveness, these models present trade-offs in latency

and computational costs. MonoBERT scales lin-
early with the number of candidate passages, while
DuoBERT exhibits exponential scaling (Nogueira
et al., 2019), making it challenging to scale to large
datasets.

To tackle the limitations of existing methods,
Unsupervised Passage Retriever (UPR) (Gao et al.,
2022) generates questions from passages using
LLMs, then computes log probability scores to
rank passages based on the generated question and
query relevance. This innovative approach allows
for improved passage retrieval in zero-shot settings,
but incurs computational overhead due to the high
complexity of question generation.

Recent work by (Sachan et al., 2023b) demon-
strated that pairwise ranking prompting with LLMs
can effectively address positional bias inherent in
listwise approaches. By comparing each document
pair in both possible orders, pairwise ranking re-
duces bias due to initial ordering. However, the
O(n?) complexity of this approach can make it
computationally prohibitive for large-scale passage
ranking tasks.

Progressive re-ranking methods refine passage
lists iteratively but suffer from initial document or-
der bias and sliding window limitations (Yang et al.,
2023). Relevant passages can become "trapped"
in local blocks, reducing the chance of reaching
the top ranks. This limitation is addressed by
RankZephyr (Jain et al., 2023) and Rank-without-
GPT (Xu and Lin, 2023), which advocate for
high-quality listwise training data and open-source
LLMs for effective re-ranking (Pradeep et al.,
2023).

While pre-trained models like BERT have rev-
olutionized passage ranking, challenges like ini-
tial ordering bias and context window limitations
remain significant hurdles. Our proposed multi-
stage approach addresses these issues by refining
initial rankings with pre-trained models and com-
pressing text using NLP techniques, setting a new
benchmark for efficient passage ranking tasks with
LLM:s.

3 Methodology

Our proposed multi-stage re-ranking pipeline com-
prises three components: (1) Refinement, where
we use a pre-trained, cost-effective ranking model
to improve the initial ranking; (2) Compression,
where we apply text-shortening techniques to fit all
documents within a single LLM context window;



and (3) Re-ranking, which leverages the refined
and compressed list to produce the final ranking.
Figure 2 provides an illustrative overview of our
proposed Multi-Stage Re-Ranking Pipeline.

3.1 Refine: Re-ordering with BERT

In our methodology, the first step involves refin-
ing the initial document ranking using MonoBERT,
a BERT-based model optimized for passage rank-
ing. MonoBERT is specifically adapted for query-
based document reranking, offering a computation-
ally efficient alternative to more resource-intensive
Large Language Models (LLMs). Its ability to pro-
vide significant ranking improvements at a reduced
cost makes it well-suited as a "pre-reranker” in our
multi-stage approach.

To solve the issue of sub-optimal initial order
of the retrieved passages, MonoBERT helps to im-
prove the ordering given to our Listwise Ranker.
MonoBERT, introduced by (Nogueira and Cho,
2019) in their seminal work Passage Re-ranking
with BERT, is designed to refine the initial rank-
ing of documents generated by a traditional IR
model such as BM25. MonoBERT takes a sin-
gle document-query pair and generates a relevance
score, meaning that it is unaffected by the initial or-
der of the documents given by BM25. The scoring
function for a given query q and passage p can be
expressed as:

S(¢,p) = MonoBERT(q, p)

In addition, since MonoBERT is a smaller pre-
trained model, it means that we aren’t employing a
solution that is much more expensive than a single-
stage Listwise Ranker.

While DuoBERT, also introduced by (Nogueira
et al., 2019) in their subsequent paper Multi-Stage
Document Ranking with BERT, is another BERT-
based model for passage ranking, it requires pair-
wise comparisons between document pairs, sig-
nificantly increasing computational costs. The
marginal performance gains from DuoBERT do
not justify this higher expense, especially when
compared to MonoBERT’s efficiency. Empirically,
MonoBERT has been shown to provide a 10% im-
provement in NDCG@ 10 over BM25, making it a
more suitable choice for initial ranking refinement
in our methodology. The pointwise scoring pro-
cess by MonoBERT ensures that the subsequent
compression and re-ranking stages are resilient to
initial list order sensitivity.

Refine + Re-rank: After the initial refinement with
MonoBERT, the next stage in our methodology
involves re-ranking the refined list using a Large
Language Model (LLM) in a listwise fashion. This
stage leverages the improved ordering provided
by MonoBERT and applies sophisticated natural
language processing techniques to further enhance
the ranking accuracy.

3.2 Compression: Compressing with FlanT5

To address the context window limitations of Large
Language Models (LLMs) and ensure efficient re-
ranking, we explored various text compression
techniques before final re-ranking (Figure 4). By
leveraging natural language generation models like
FlanT5-XL (Chung et al., 2022b) and GPT-3.5
(OpenAl, 2022), we aimed to condense the essen-
tial information of each passage into a more man-
ageable format. This stage ensures that all passages
fit within a single context window, eliminating the
need for a sliding window approach.

3.2.1 Compression Techniques

We experimented with a variety of compression
techniques and compared their performance:

Title Generation: Ask the LLM to write a con-
cise title describing the passage. Titles provide
a quick summary of the main themes and guide
the LLM’s understanding during re-ranking. Title
Compression involves condensing the main themes
and content of a text into a short, informative title.
This process enables the LLM to focus on the most
relevant aspects of the document. After the initial
retrieval, the top-K passages are processed through
a prompt that summarizes or distills the main con-
tent. Compressed titles distill the passages to their
essence, potentially eliminating the need for slid-
ing windows since the inputs will not exceed the
model’s maximum input length. Figure 3 shows
the precise input prompt used for title compression.
For title generation using FlanT5-XL, the model
generates a summary title T for each passage p
given a query q:

T = FlanT5-XL(q, p)

Title + Topics: This approach incorporates topic
modeling into title compression. Each passage is
first processed to identify its main content, which is
then tokenized and converted into a bag-of-words
representation. Using an LDA model (Jelodar et al.,
2018), we extract the top topics for each passage
and format them into a string summarizing these
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Figure 1: Multi-Stage Re-Ranking Pipeline

themes. This enriched passage information is sub-
mitted to GPT-3.5, which generates concise, infor-
mative titles based on both the passage content and
the identified topics. The combination of titles and
topics improves the LLM’s understanding, leading
to accurate re-ranking results.

Keyword Extraction: In the keyword extraction
approach, we experimented with two methods:
KeyBERT (Koloski et al., 2022), a pre-trained
model that uses BERT embeddings, and FlanT5-
XL, a generative model with a custom prompt. The
LLM-based extraction proved more effective, espe-
cially for the TREC datasets. We tested extracting
different numbers of keywords (1, 5, 10, and 20)
and found that 10 keywords struck a good balance
between ranking performance and fitting within
the LLM’s input constraints. The extracted key-
words were then combined with titles to form new
input "passages" for GPT-3.5, which significantly
improved the re-ranking accuracy. Keyword ex-
traction involves computing the cosine similarity
between the passage embeddings e, and keyword
embeddinsgs ey:

ep - ek
COS = —
(e k) = e, Teal

3.2.2 Compress + Re-Rank

The compress + re-rank approach begins with a
basic text retrieval method like BM25 and incorpo-
rates advanced neural models like FlanT5-XL and
GPT-3.5 to enhance document understanding and
contextual relevance. This multi-stage approach op-
timizes both the quality of search results and the ef-

ficiency of the retrieval process, transitioning from
broad initial retrieval to fine-grained re-ranking.

By employing this method, we are able to cir-
cumvent the issue of token limits as well as improve
the LLMs ability to attend to the context of 100
passages. By using an LLM other than GPT, we
are able to minimize the number of calls made to
GPT and reduce the cost of our pipeline as opposed
to compressing the passages with GPT.

3.3 Re-Rank: Listwise Re-Ranking with
GPT-3.5

The final stage of our pipeline involves re-ranking
the compressed passages using GPT-3.5 in a list-
wise fashion. Inspired by the work of (Li et al.,
2023) in their RankGPT paper, we leverage GPT-
3.5’s comprehensive understanding and contextual
processing capabilities to deliver a highly accu-
rate final ranking. In our approach, each passage
is represented using the compressed information
generated in the previous stages. This includes
titles created with FlanT5-XL, along with either
keywords or topics extracted from the original pas-
sages. The titles provide concise summaries, while
the keywords and topics offer additional context
that enhances GPT-3.5’s understanding.

To guide GPT-3.5 in understanding the query,
passage context, and relationships between pas-
sages, we carefully designed a listwise prompt. The
prompt structure includes a brief description of the
user query, a list of compressed titles with accom-
panying keywords or topics, and a clear instruction
to rank the passages based on their relevance to the



Compression
Prompt

Generate a concise title
for the passage based
on the content

mentioned above

Figure 2: Title Generation Prompt

query.
4 Experiments

4.1 Datasets

We chose to run our experiments on two bench-
mark datasets, including TREC-DL (Craswell et al.,
202(Craswell et al., 2021) and BEIR (Thakur et al.,
2021). Both benchmark datasets are widely used in
information retrieval research. TREC datasets con-
sist of text documents along with relevance judg-
ments, which are used to evaluate the effectiveness
of different information retrieval systems. We use
test sets from the 2019 and 2020 competitions: (i)
TREC-DL19 which contains 43 queries, (ii) TREC-
DL20 which contains 54 queries. BEIR contains
data for retrieval tasks across diverse domains. We
use four tasks from BEIR: (i) Covid: retrieves sci-
entific articles for COVID-19 related questions;
50 queries. (ii) Touche is an argument retrieval
dataset; 49 queries. (iii) Signal retrieves relevant
tweets for a given news title; 97 queries. (iv) News
retrieves relevant news articles for news headlines;
54 queries. Together, these six tasks cover a wide
variety of passage topics and queries, enabling us to
gather a holistic view of our model’s performance.

4.2 Baselines

For our baselines, we chose to compare our
results to two models, BM25 and RankGPT.

BM25 is a lexical retriever that is typically
used as an initial retriever in several multistage
pipelines. BM25 orders passages by weighing the
term-frequency and inverse document frequency
of the keywords found in both the question and
passage (Robertson and Zaragoza, 2009). This
configuration is show to be a robust method of
retrieving (Ma, 2021) and is a staple baseline for
several IR papers, which is why chose to include it
in our results.

RankGPT is the initial implementation of Per-
mutation Generation which we aimed to improve
upon, which is why we include it as our second
baseline. RankGPT performs relative re-ranking
on a set of passages with a sliding window configu-
ration, reading 20 passages at a time with a stride of
10. We use GPT-3.5-Turbo when evaluating with
RankGPT.

4.3 Results

In this section, we provide a detailed evaluation
of our multi-stage re-ranking methodology across
several datasets. We compare the performance of
different ranking strategies using nDCG scores
at varying cutoff points (1, 5, and 10). The
datasets used include DL-19, DL-20, COVID,
News, Touche, and Signal. TODO: Include quanti-
tative and qualitative results

4.3.1 Quantitative Evaluation

Table 1 presents the evaluation results obtained
across different datasets, including DL-19, DL-20,
COVID, News, Touche, and Signal. We compare
several ranking strategies such as BM25 initial re-
trieval, MonoBERT, listwise re-ranking with slid-
ing window (baseline), and our proposed combina-
tions of MonoBERT and FLAN-TS5 models. For
each dataset, we report the nDCG scores at cutoff
points 1, 5, and 10.

* MonoBERT + Listwise Re-Ranking: In-
corporating MonoBERT generally enhances
performance further, achieving significant im-
provements over BM25 initial retrieval across
most datasets. For instance, in the DL-19
dataset, MonoBERT achieves an nDCG@1
score of 79.07, compared to BM25’s score of
54.26. However, in some cases, MonoBERT
falls slightly below the baseline listwise re-
ranking, particularly in the News and Touche
datasets.

* Title Compression with FLAN-T5 + List-
wise Re-Ranking: This method works well in
general and consistently outperforms BM25
initial retrieval. It also surpasses more so-
phisticated re-ranking strategies involving
MonoBERT or listwise re-ranking with slid-
ing window in some cases. For example, in
the COVID dataset, Title Compression with
FLAN-T5 achieves an nDCG@1 score of
94.00 and nDCG @5 score of 85.64, which is
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Figure 3: Compression Pipeline

the highest score among all methods, indicat-
ing that title compression works particularly
well for this dataset.

* MonoBERT + Listwise Re-Ranking with
Sliding Window: This combination shows
significant improvements over BM25, particu-
larly in the COVID dataset, where it achieves
an nDCG@]1 score of 92.00, compared to
BM25’s score of 68.00. However, it does not
consistently outperform other methods across
all datasets.

* MonoBERT + Compression with FLAN-
TS + Listwise Re-Ranking: This combina-
tion generally improves the ranking results
but does not consistently outperform methods
involving only MonoBERT or only title com-
pression. For instance, in the DL-19 dataset, it
achieves an nDCG @1 score of 65.12, which is
lower than the score achieved by MonoBERT
alone (79.07).

* COVID Dataset: This dataset shows the high-
est scores across nearly all methods, partic-
ularly when FLAN-TS is involved, suggest-
ing that title compression works especially
well for this dataset. The combination of
MonoBERT with Title Compression and List-
wise Re-Ranking achieves an nDCG@1 score
of 90.00.

* DL-19 and DL-20: In the DL-19 and DL-
20 datasets, MonoBERT-enhanced methods
generally perform well, indicating that the so-
phistication of MonoBERT suits the types of
queries or document characteristics in these
datasets. For instance, MonoBERT achieves
an nDCG @5 score of 70.35 in DL-20, com-
pared to BM25’s score of 50.67.

* News, Touche, and Signal Datasets: These
datasets appear more challenging for title com-
pression methods, which sometimes underper-
form even the basic BM25 retrieval, partic-
ularly at lower ranks. In the News dataset,
Title Compression with FLAN-TS achieves
an nDCG@1 score of 54.53, which is only
marginally better than BM25’s score of 42.69.

4.3.2 Qualitative Evaluation

Traditional approaches in this domain often involve
fine-tuning the models on specific datasets or mak-
ing architectural modifications, which fail to ad-
dress the inherent limitations of the listwise rank-
ing approach or the issue of positional bias that
makes LL.Ms sensitive to input order. Our method
is focused on solving these issues by prioritizing
the preprocessing of data before introducing it to
the LLM. The use of a cheaper ranking model to en-
hance the initial order of passages helps us present
a better ranked list of passages to the LLM, while



Datasets

DL-19

DL-20

Covid

News

Touche

Signal

nDCG Score

1

5

10

1

5

10

1

5

10

1

5

10

1

5

10

1

5

10

BM25

54.26

52.78

50.58

57.72

50.67

47.96

68.00

63.24

59.47

42.69

41.28

39.52

56.12

48.11

44.22

41.75

37.04

33.05

RankGPT

77.52

75.06

69.51

78.09

68.48

65.42

76.00

75.27

73.06

52.05

49.91

47.21

53.06

40.37

37.29

47.94

36.55

32.00

Refine-Rank

74.42

73.39

70.77

78.09

70.86

68.46

92.00

81.91

76.40

47.66

49.96

46.96

43.88

33.64

30.03

41.24

33.70

30.59

Compress-Rank

51.55

56.91

53.17

62.96

50.88

46.52

94.00

85.64

77.69

54.53

51.08

45.98

37.76

33.61

30.44

48.45

35.10

29.24

Refine-Compress-Rank

65.12

60.61

57.23

65.74

53.78

47.58

90.00

83.43

78.46

49.71

49.59

46.66

42.86

31.04

27.80

43.30

32.80

28.30

Table 1: This table presents results performed on various datasets from BEIR and TREC. The models shown are

either baselines or variations of our final pipeline.

keeping costs low, and the use of natural language-
based text condensation to effectively reduce text
verbosity while preserving its semantic essence al-
lows the LLM to process the relevant information
without the need for a sliding window.

The refine + rerank method demonstrated a ma-
jor improvement in scores across four of the six
datasets tested, suggesting that LLMs do in fact
exhibit a strong positional bias, and enhancing
the initial order of documents can significantly
boost ranking performance. The compress + rerank
method showed improvement over the baseline for
the COVID and News datasets and yielded com-
parable results for the Signal dataset. While we
attempted to condense passage information into
a summarized form while retaining significant in-
formation, it appears that this method caused to
a greater loss in information than we hoped for,
subsequently impairing the LLM’s ability to effec-
tively rerank passages. Furthermore, combining
these strategies into refine + rompress + rerank ap-
proach improved performance over the baseline in
the COVID dataset and achieved comparable out-
comes in the News dataset, performing similarly to
the compress + rerank method, demonstrating that
the loss of information causes due to the compres-
sion step has a measurable negative impact.

Our solution, which eliminates a sliding win-
dow completely, surpasses the performance of the
previous state-of-the-art method which relies on a
sliding window for one of the benchmark datasets,
and performs relatively well for the other datasets
as well. This indicates that our approach, while not
perfectly successful in outperforming the existing
methods, does hold promise for future develop-
ments and warrants further exploration into similar
methods. Furthermore, this approach allows for
the use of any off-the-shelf LLMs to produce good
ranking results despite not being particularly tuned
for the ranking task or domain.

4.3.3 Cost Breakdown

One aspect which several re-ranking papers fail
to mention is the cost of running models for the
task of re-ranking. This was a harsh limitation that
we had to face, however, as running more expen-
sive re-ranking methods was not a viable approach
for us. The final methods we chose were not only
some of the most performant, but were also deter-
mined to be much more cost effective than running
RankGPT alone. To break down how this is the
case, we will going over platform costs, time spent
in inference, as well as the differing costs between
using GPT with and without compression. For this,
we will use Covid as our reference dataset for cost.

Platform Cost A majority of our re-ranking
pipeline was run using a V100 GPU on Google
Colab. Colab gives 100 credits per $10 spent and
running a V100 GPU for an hour costed 4.3 credits,
as detailed in their inline resource monitor. Given
these two metrics, we can determine the cost per
hour to be $0.43 per hour. It was also possible
to use a T4 GPU for free on an unpaid account,
which we took advantage of for our refinement
stage, meaning the effective cost was 0. As for
GPT, we tracked overall money spent using their
API dashboard.

Compute Time The models we chose for Re-
finement and Compression are MonoBERT and
FlanT5XL respectively. MonoBERT can be ex-
cluded from the cost analysis due to it’s relative
low cost. FlanT5SXL typically ran for 2 minutes for
every 100 passages compressed on a V100 GPU.
Depending on the dataset, the cost can differ drasti-
cally. With Covid, this would amount to approxi-
mately 100 minutes of compression. Based on our
Platform Costs, we can determine the overall cost
to be $0.72.

GPT Costs OpenAl provides a billing dash-
board, which we used to track the money spent.
Without compression, we found that GPT would
cost about $3.83 on the Covid dataset. With com-
pression, we found that GPT would cost around
$2.02. This is likely due to compression, reduc-



ing the number of tokens inputted into GPT. We
also noticed that larger token inputs tend to result
in timeouts and additional calls, which incur more
cost and time spent, something more prevalent with-
out compression.

Overall Costs Overall, we found that using Re-
finement and Compression Reduced Costs to a sig-
nificant degree. With Refinement and Compression,
the overall cost was $2.74 as opposed to RankGPT,
which was $3.83. This marks a 29% decrease in
cost, something which was much more noticeable
when running over large datasets.

5 Conclusion

This paper presents a comprehensive multi-stage
approach to improving listwise re-ranking in Large
Language Models (LLMs), leveraging the strengths
of MonoBERT, FlanT5-XL, and GPT-3.5. Our
methodology addresses the inherent challenges in
listwise re-ranking, such as sensitivity to initial
data ordering and the limitations of the context win-
dow. By using the open-source FlanT5-XL model
for title generation and compression, we signifi-
cantly reduced the costs compared to proprietary
models like GPT-3.5. Our findings underscore the
importance of choosing the right strategies and the
potential of open-source models like FLAN-TS to
offer competitive performance with cost-effective
solutions.

5.1 Limitations

Refine: We found that the refinement stage of the
pipeline did not work as intended. In some scenar-
ios, it improved performance; however, in others,
it exacerbated prior issues present in both the pre-
trained model and Listwise Generation.

Compress: We found that compression also pre-
sented mixed results. It struggled to accurately
represent the passages. Since we are prompting an
LLM, we found that part of the issue lies with the
prompt not being ideal for all datasets as well as
the LLM itself not being properly trained for the
task at hand.

5.2 Future Ideas

Fine-tuning: We believe that fine-tuning the open
parts of our pipeline, both individually and as part
of the entire pipeline, would benefit greatly, as
the models would be better able to re-order and
compress the passages according to the need of the
Listwise model.

Prompting: We also believe that modifying our
prompt to better summarize and capture key details
about the passage would help in compressing our
passages effectively. In addition, we believe text
extraction could pose a better solution if done on
a sentence or multi-sentence level (i.e. Please se-
lect a sentence from the passage which accurately
answers the query.)

Model: Both the pre-trained model and open
LLM could be replaced with potentially better mod-
els. However, we have not found time to test these
alternative strategies.
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